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Spin depolarization due to beam-beam collisions
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The effect of the beam-beam interaction on spin depolarization in a proton-proton collider has been studied.
The employed method is based on a matrix formalism for spin advance and for perturbed betatron particle
motion in a ring. Calculations were done for a collider with one interaction point and two installed Siberian
Snakes in each ring. A matrix for spin advance after an arbitrary large number of turns is found. Performed
study indicates that spin depolarization due to beam-beam collisions is suppressed if the beam-beam interaction
is stable and if the operation point is far enough from spin resonances. Meanwhile, in the absence of snakes or
under beam-beam instability, spin is a subject of strong depolarization. Analytical estimations are confirmed by
results of computer simulations.@S1063-651X~98!06507-6#

PACS number~s!: 29.27.Hj, 29.27.2a, 41.85.2p
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I. INTRODUCTION

Particle colliders with polarized beams require care
control of spin depolarization. During acceleration, spin
subjected to intrinsic and imperfection resonances, resul
in depolarization. An extra source of depolarization is bea
beam collisions. Due to beam-beam interaction, particle m
tion become essentially nonlinear and, under some circ
stances, unstable. In the present paper, the effect of be
beam collision on spin depolarization in a proton-prot
collider is studied. Betatron particle motion is defined a
linear oscillator perturbed by a nonlinear beam-beam k
Spin rotation is described by subsequent spin matrix mu
plication in a dipole magnet, in Siberian Snakes, and in
beam-beam interaction point. Analytical treatment of t
problem provides a choice of the collider operation poi
where depolarization is suppressed. It also indicates a z
of relatively strong depolarization.

II. SPIN MATRIX FORMALISM

Rotation of spinSW of a particle with chargeq, massm,
velocity bW 5vW /c, and energy g is governed by the
Bargmann-Michel-Telegdi~BMT! equation@1#:

dSW

dt
5

q

mg
SW 3F ~11Gg!BW'1~11G!BW i

1S Gg1
g

11g D EW 3bW

c
G , ~2.1!
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whereG51.792 85 is an anomalous magnetic momentum
the proton,EW is an electrical field, andBW' andBW i are com-
ponents of magnetic field, perpendicular and parallel to p
ticle velocity, respectively,

BW'5
1

v2 ~vW 3BW !3vW , ~2.2!

BW i5
1

v
~vW •BW !

vW

v
. ~2.3!

Particle velocityvW is expanded in the orthonormal set
curvilinear coordinate (xW ,yW ,zW) as follows:

vW 5 żFx8xW1y8yW1S 11
x

r D zWG , ~2.4!

where r is a curvature radius of the reference coordin
system, the dot means a derivative over time, and the pr
means a derivative over longitudinal coordinate. Change
the independent variable in Eq.~2.1! from t for z gives

dSW

dt
5

dSW

dz

dz

dt
5

dSW

dz

v

F S 11
x

r
D 2

1x821y82G1/2. ~2.5!

Calculation of magnetic field components~2.2! and ~2.3!
results in the following expressions:
BW'5Fx821y821S 11
x

r D 2G21XH F S 11
x

r D 2

1y82GBx2x8y8By2x8BzS 11
x

r D J xW

1H 2x8y8Bx1F S 11
x

r D 2

1x82GBy2y8BzS 11
x

r D J yW1F2x8BxS 11
x

r D2y8ByS 11
x

r D1~x821y82!BzGzWC,
~2.6!
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BW i5Fx821y821S 11
x

r D 2G21Fx8Bx1y8By1S 11
x

r DBzGFx8xW1y8yW1S 11
x

r D zW G . ~2.7!
e

en

ha
The vector product of the electric field and the particle v
locity gives

EW 3vW 5 żH FEyS 11
x

r D2Ezy8GxW1FEzx82S 11
x

r DExGyW
1@y8Ex2Eyx8#zWJ . ~2.8!

Combining all terms, the BMT equation now can be writt
as

dSW

dz
5SW 3PW ~2.9!

or

dSx

dz
5SyPz2SzPy ,

dSy

dz
5SzPx2SxPz , ~2.10!

dSz

dz
5SxPy2SyPx ,

where the vectorPW 5(Px ,Py ,Pz) is given by the terms up to
first order by the following expressions:

Px5
q

mgv F ~11Gg!~Bx2x8Bz!1~11G!x8Bz

1
v
c2 S g

11g
1Gg D ~Ey2y8Ez!G , ~2.11!

Py5
q

mgv F ~11Gg!~By2y8Bz!1~11G!y8Bz

1
v
c2 S g

11g
1Gg D ~x8Ez2Ex!G , ~2.12!

Pz5
q

mgv F ~11Gg!~2x8Bx2y8By!

1~11G!~x8Bx1Bz1y8By!

1
v
c2 S g

11g
1Gg D ~y8Ex2Eyx8!G . ~2.13!

To derive the matrix of spin rotation, let us assume t
the vectorPW is a constant at the infinitesimal distancedz.
The second derivative of the spin vector is given by

d2Sx

dz2 5SzPxPz2Sx~Pz
21Py

2!1SyPxPy ,
-

t

d2Sy

dz2 5SxPxPy2Sy~Px
21Pz

2!1SzPyPz , ~2.14!

d2Sz

dz2 5SyPyPz2Sz~Py
21Px

2!1SxPzPx ,

Taking the third derivative of spin vector, Eqs.~2.10! are
reduced to the third-order differential equations:

Sx-1P0
2Sx850,

Sy-1P0
2Sy850, ~2.15!

Sz-1P0
2Sz850,

P0
25Px

21Py
21Pz

2. ~2.16!

A general solution to the problem~2.15! can be written in the
form

Sx5Cx11Cx2cos~P0dz!1Cx3sin~P0dz!,

Sy5Cy11Cy2cos~P0dz!1Cy3sin~P0dz!, ~2.17!

Sz5Cz11Cz2cos~P0dz!1Cz3sin~P0dz!,

where constantsCi j , i 5(x,y,z), j 5(1,2,3) depend on ini-
tial conditions.

Let us express constants in Eqs.~2.17! through initial val-
ues of spin and its derivatives. Assuming in Eq.~2.17! dz

50, the initial value of spin vectorSW 05(Sx0 ,Sy0 ,Sz0) is
given by

Sx05Cx11Cx2 ,

Sy05Cy11Cy2 , ~2.18!

Sz05Cz11Cz2 .

From Eqs. ~2.17!, initial values of the first SW 08

5(Sx08 ,Sy08 ,Sz08 ) and of the secondSW 095(Sx09 ,Sy09 ,Sz09 ) order
derivatives of spin vector are

Sx08 5Cx3P0 ,

Sy08 5Cy3P0 , ~2.19!

Sz08 5Cz3P0 ,

Sx09 52Cx2P0
2,

Sy09 52Cy2P0
2, ~2.20!

Sz09 52Cz2P0
2.
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Combining Eqs.~2.17!–~2.20!, solution for spin advance a
the distancedz can be written as follows:

SW 5SW 01
SW 08

P0
sin~P0dz!1

SW 09

P0
2 @12cos~P0dz!#. ~2.21!

Substitution of Eqs.~2.10! and ~2.14! into Eq. ~2.21! gives
the following matrix of spin rotation at the distancedz @2#:

USx

Sy

Sz

U5U12a~B21C2!

ABa2Cb
ACa1Bb

ABa1Cb
12a~A21C2!

BCa2Ab

ACa2Bb
BCa1Ab

12a~A21B2!
U

3USx,0

Sy,0

Sz,0

U , ~2.22!

A5
Px

P0
, B5

Py

P0
, C5

Pz

P0
, ~2.23!

a512cosw, b5sin w, w5P0dz. ~2.24!

Matrix ~2.22! can be used for calculation of spin rotatio
in an arbitrary electromagnetic field, assuming the field
constant at the distancedz. Below, matrix ~2.22! will be
applied for the calculation of spin advance in a bending m
net and in a beam-beam interaction point.

III. MODEL OF COLLIDER
WITH POLARIZED PARTICLES

A. Particle betatron motion

Let us consider a collider ring with two installed Siberia
Snakes. We use a two-dimensional particle model in coo
nates„x,px5bx* (dx/dz)…, „y,py5by* (dy/dz)…, wherebx* ,
by* are beta functions of the ring. Particle motion betwe
subsequent collisions combines linear matrix transformat
perturbed by beam-beam interaction:

S xn11

px,n11

yn11

py,n11

D 5S cos ūx

2sin ūx

0
0

sin ūx

cos ūx

0
0

0
0

cos ūy

2sin ūy

0
0

sin ūy

cos ūy

D
3S xn

px,n1Dpx,n

yn

py,n1Dpy,n

D , ~3.1!

whereūx52pQx andūy52pQy are betatron angles andQx
and Qy are betatron tunes. Beam-beam kicksDpx,n , Dpy,n
are expressed as a result of an interaction of particles
opposite beam with the Gaussian distribution function

Dpx,n54pjxn

12exp~2r n
2/2sn

2!

~r n
2/2sn

2!
, ~3.2!

and similar forDpy,n . Parameterj is a beam-beam param
eter, which characterizes the strength of the beam-beam
teraction,
s

-

i-

n
n,

th

in-

j5
Nr0b*

4ps2g
, ~3.3!

where N is a number of particles per bunch,r 0
5q2/(4pe0mc2) is a classical particle radius, ands is a
transverse standard deviation of the opposite beam size

B. Spin matrix

Rotation of spin vectorSW 5(Sx ,Sy ,Sz) is described by a
subsequent matrix transformation in a lattice arc, in Siber
Snakes, and in an interaction point.

1. Dipole magnet

Spin rotation in an ideal lattice arc is described as a s
precession in a dipole magnet with bending anglev. Assume
that the field of the dipole magnet has only one vertical co
ponent:

Bx50, Bz50, By5B. ~3.4!

Therefore, components of vectorPW , Eqs.~2.11!–~2.13!, and
corresponding matrix coefficients, Eqs.~2.23! and~2.24!, are
given by

Px50, Py5
~11Gg!

r
, Pz50, A50, B51, C50,

~3.5!

P0dz5
~11Gg!

r
dz5~11Gg!v. ~3.6!

The matrix of spin rotation in the dipole magnet is@3#

Dv5Ucos~P0dz!

0
sin~P0dz!

0
1
0

2sin~P0dz!

0
cos~P0dz!

U . ~3.7!

2. Siberian Snakes

Siberian Snakes rotate any spin vector by anglep around
axis @4#. Two types of snakes are used, which matrixes
given by

S15U0
0
1

0
21
0

1
0
0
U , ~3.8!

S25U 0
0

21

0
21
0

21
0
0
U . ~3.9!

3. Interaction point

Spin advance after crossing an interaction point is
scribed by matrix~2.22!, wheredz is an interaction distance
defined below. VectorPW , Eqs.~2.11!–~2.13!, in the case of a
head-on beam-beam collision, is as follows:

Px5
1

Br S ~11Gg!Bx1S Gg1
g

11g D bEy

c D , ~3.10!
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Py5
1

Br F ~11Gg!By2S Gg1
g

11g D bEx

c G , ~3.11!

Pz50, ~3.12!

where small termsx8,y8 are neglected,Br5mcbg/q is a
rigidity of particles,EW 5(Ex ,Ey,0) is an electrical field, and
BW 5(Bx ,By,0) is a magnetic field of the opposite bunch. D
to Lorentz transformations, components of electromagn
field of the opposite bunch are connected via relationshi

Bx5b
Ey

c
, By52b

Ex

c
. ~3.13!

Assuming, that interacted particles are ultrarelativisticb

'1, g@1, the vectorPW is simplified,

Px5
qEy

mc2g F ~11Gg!1S Gg1
g

11g D G'2G
qEy

mc2 ,

~3.14!

Py5
qEx

mc2g F2~11Gg!2S Gg1
g

11g D G'22G
qEx

mc2 .

~3.15!

Let us express the matrix parameterw, Eq. ~2.24!, via the
beam-beam parameterj. Electrostatic field of the opposit
round Gaussian bunch with lengthl and peak currentI
5qNbc/ l is

Er5
qN

2p«0lr F12expS 2
r 2

2s2D G
5

I

2p«0bcr F12expS 2
r 2

2s2D G , ~3.16!

Ex5Er

x

r
, Ey5Er

y

r
. ~3.17!

Substitution of the expression of the electrostatic field i
Eqs.~3.14! and ~3.15! gives the expressions for vectorPW ,

Px54G
I

I c

y

r 2 F12expS 2
r 2

2s2D G , ~3.18!

Py524G
I

I c

x

r 2 F12expS 2
r 2

2s2D G , ~3.19!

whereI c54p«0mc3/q5(A/Z)3.133107 A is a characteris-
tic value of the beam current. The beam-beam parameterj in
Eq. ~3.3! can be rewritten as follows:

j5
b*

4p

I

I c

l

gs2 . ~3.20!

To define the interaction distancedz, let us suppose tha
at the time momentt50 the test particle enters the oppos
bunch~see Fig. 1!. The equation of motion of the test partic
is z15v1t. The equation of motion of the right edge of th
bunch isz25 l 2v2t. The test particle will leave the opposit
bunch whenz15z2 , or after the time intervalt5 l /(v1
1v2) .
ic

o

The coordinate of the test particle at this moment,z15v1t, is
equal to the interaction distancedz:

dz5v1t5 l
v1

v11v2
5

l

2
. ~3.21!

Taking into account Eqs.~3.18! and~3.19!, the parameters
of the spin matrixPxdz,Pydz can be expressed as follows

Pxdz5Px

l

2
54pGgj

y

b* F 12expS 2
r 2

2s2D
S r 2

2s2D G ,

~3.22!

Pydz5Py

l

2
524pGgj

x

b* F 12expS 2
r 2

2s2D
S r 2

2s2D G .

~3.23!

Finally, the parameterw is given by

w5A~Pxdz!21~Pydz!2

54pGgj
r

b* F 12expS 2
r 2

2s2D
S r 2

2s2D G . ~3.24!

The parameterw is typically much smaller than 2p, which
gives us the possibility of simplifying the matrix of spi
rotation in the interaction point and to provide an analytic
treatment of the problem~see the next section!.

TABLE I. Parameters of the numerical model.

Number of modeling particles,N 5000
Number of turns 106

CPU time~for VAX Alpha! 5 h

FIG. 1. Position of the test particle with respect to the oppos
bunch:~a! before interaction;~b! after interaction.
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The model developed in this section was incorporated
the numerical codeBEAMPATH @5#. Typical parameters of the
numerical model are summarized in Table I.

IV. ANALYTICAL TREATMENT OF SPIN
DEPOLARIZATION

A. Simplified spin matrix in the interaction point

To make an analytical treatment of spin depolarization,
us simplify the suggested model. Consider a collider w
two Siberian Snakes and one interaction point. The matrix
spin advance after one revolution in the ring between
beam-beam interaction is

M ring5Dp/2S2DpS1Dp/25U21
0
0

0
1
0

0
0

21
U . ~4.1!

FIG. 2. Stable particle trajectories in phase space in the pres
of a beam-beam interaction without noise.
o

t
h
f
e

Suppose that betatron angles in thex andy directions are
equal to each other,ux5uy5u. We consider particle motion
far enough from low order resonances, therefore particle
jectory can be expressed as a linear oscillator with pertur
betatron tuneu:

x5r cos~nu1C!, y5r sin~nu1C!, u5 ū1Du,
~4.2!

whereC is an initial phase of betatron particle oscillation
andDu!2p is a tune perturbation due to beam-beam co
sions. In Fig. 2, an example of particle trajectories in t
presence of a stable beam-beam interaction is given. Par
trajectories in phase space are slightly deformed ellipses
this case, beam envelopes and beam emittances are
stable~see Fig. 3!. Beam-beam instability and its effect o
spin depolarization will be considered in Sec. V.

ParametersA and B, Eq. ~2.23!, at the interaction point
can be expressed as follows:

A5
Px

P0
5

y

r
5sin~nu1C!, ~4.3!

B5
Py

P0
52

x

r
52cos~nu1C!. ~4.4!

Let us take into account that the parameterw is small:

w5P0dz54pGgj
r

b* S 12
r 2

4s2 1¯ D!2p. ~4.5!

Hence, the matrix parametersa andb are as follows:

a512cosw'
w2

2
, b5sin w'w. ~4.6!

Finally, the matrix of spin advance of a particle in an inte
action point at thenth turn is given by

ce
FIG. 3. ~a! and ~b! Beam envelopes;~c! and ~d! beam emittances in the presence of a stable beam-beam interaction.
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Mb-b~n!5U 12
w2

2
cos2~nu1C! 2

w2

4
sin 2~nu1C! w cos~nu1C!

2
w2

4
sin 2~nu1C! 12

w2

2
sin2~nu1C! w sin~nu1C!

2w cos~nu1C! 2w sin~nu1C! 12
w2

2

U . ~4.7!

B. Spin matrix after an arbitrary number of turns

Now let us derive a matrix of spin advance after an arbitrary number of turns. Due to the small value of the paramw,
we will leave in the resulting matrix only terms proportional tow andw2, while neglecting terms withw3, w4, and higher
order.

Suppose the initial position of the particles is just before the interaction point. After the interaction point, the matrix
advance is the matrix~4.7!, wheren50:

Mb-b~1!5U 12
w2

2
cos2C 2

w2

4
sin 2C w cosC

2
w2

4
sin 2C 12

w2

2
sin2C w sin C

2w cosC 2w sin C 12
w2

2

U . ~4.8!

After the interaction point, particles perform one revolution in the ring and the spin matrix after the first turn,M1/0, is a
product of matrixes~4.1! and ~4.8!:

M1/05U21
0
0

0
1
0

0
0

21
UU 12

w2

2
cos2C 2

w2

4
sin 2C w cosC

2
w2

4
sin 2C 12

w2

2
sin2C w sin C

2w cosC 2w sin C 12
w2

2

U5U211
w2

2
cos2C

w2

4
sin 2C 2w cosC

2
w2

4
sin 2C 12

w2

2
sin2C w sin C

w cosC w sin C 211
w2

2

U .

~4.9!

Analogously, after the second turn the spin matrix is

M2/05U21
0
0

0
1
0

0
0

21
UU 12

w2

2
cos2~u1C! 2

w2

4
sin 2~u1C! w cos~u1C!

2
w2

4
sin 2~u1C! 12

w2

2
sin2~u1C! w sin~u1C!

2w cos~u1C! 2w sin~u1C! 12
w2

2

U
3U211

w2

2
cos2C

w2

4
sin 2C 2w cosC

2
w2

4
sin 2C 12

w2

2
sin2C w sin C

w cosC w sin C 211
w2

2

U
5U 12

w2

2
@cosC1cos~u1C!#2 2

w2

4
@sin 2C2sin 2~u1C!1¯# w@cosC1cos~u1C!#

w2

4
@2sin 2C1sin 2~u1C!1¯# 12

w2

2
@sin C2sin~u1C!#2 w@sin C2sin~u1C!#

2w@cosC1cos~u1C!# 2w@sin C2sin~u1C!# 12w22w2cos~u12C!

U . ~4.10!
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Every element of the matrix~4.10! has a specific dependence on the turn number. Let us assume that after (n11) turns the
resulting matrix of spin rotation will be as follows:

M ~n11!/05U ~21!n11F12
w2

2 S (
i 50

n

cos~ iu1C!D 2G w2

4 S (
i 50

n

~21! i 1nsin 2~ iu1C!1¯ D ~21!n11w(
i 50

n

cos~ iu1C!

w2

4 S (
i 50

n

~21! i 11sin 2~ iu1C!1¯ D 12
w2

2 S (
i 50

n

~21! isin~ iu1C!D 2

w(
i 50

n

~21! isin~ iu1C!

~21!nw(
i 50

n

cos~ iu1C! w(
i 50

n

~21! i 1nsin~ iu1C! ~21!n11S 12
n11

2
w21¯ D

U .

~4.11!

Then, multiplying the suggested matrix~4.11! by the matrix of spin advance in the next beam-beam interaction, Eq.~4.7!, and
by the matrix of spin advance in a ring, Eq.~4.1!, the matrix after (n12) turns is obtained:

M ~n12!/05U21
0
0

0
1
0

0
0

21
UU12

w2

2
cos2@~n11!u1C# 2

w2

4
sin 2@~n11!u1C# w cos@~n11!u1C#

2
w2

4
sin 2@~n11!u1C# 12

w2

2
sin2@~n11!u1C# w sin@~n11!u1C#

2w cos@~n11!u1C# 2w sin@~n11!u1C# 12
w2

2

U
3U ~21!n11F12

w2

2 S (
i 50

n

cos~ iu1C!D 2G w2

4 S (
i 50

n

~21! i 1nsin2~ iu1C!1¯ D ~21!n11w(
i 50

n

cos~ iu1C!

w2

4 S (
i 50

n

~21! i 11sin 2~ iu1C!1¯ D 12
w2

2 S (
i 50

n

~21! isin~ iu1C!D 2

w(
i 50

n

~21! isin~ iu1C!

~21!nw(
i 50

n

cos~ iu1C! w(
i 50

n

~21! i 1nsin~ iu1C! ~21!n11S 12
n11

2
w21¯ D

U
5U ~21!n12F12

w2

2 S (
i 50

n11

cos~ iu1C!D 2G w2

4 S (
i 50

n11

~21! i 1n11sin 2~ iu1C!1¯ D ~21!nw(
i 50

n11

cos~ iu1C!

w2

4 S (
i 50

n11

~21! i 11sin 2~ iu1C!1¯ D 12
w2

2 S (
i 50

n11

~21! isin~ iu1C!D 2

w(
i 50

n11

~21! isin~ iu1C!

~21!n11w(
i 50

n11

cos~ iu1C! w(
i 50

n11

~21! i 1n11sin~ iu1C! ~21!n12S 12
n12

2
w21¯ D

U . ~4.12!
x

.

re
po
tia
The resulting matrix~4.12! can be written as the matri
~4.11!, where the index (n) is substituted by the index
(n11). Therefore, suggestion~4.11! is correct and gives the
matrix of spin advance after an arbitrary number of turns

C. Spin components aftern turns

The developed approach gives us the possibility of p
dicting the effect of a beam-beam interaction on spin de
larization after a large number of turns. Suppose the ini
spin vector has only one transverse componentSy51 and the
other components are equal to zero,Sx5Sz50 ~see Fig. 4!.
Spin advance is as follows:

USx

Sy

Sz

U5Ua11
a21
a31

a12

a22

a32

a13

a23

a33

UU0
1
0
U , ~4.13!

therefore only matrix elementsa12,a22,a32 are essential to
determine the values of spin components aftern turns:
-
-
l

Sx5
w2

4 S (
i 50

n21

~21! i 1n21sin 2~ iu1C!1¯ D
5~21!n21

w2

4

sinS n~2u1p!

2 D
cosu

3sinS 2C1
n21

2
~2u1p! D1¯ , ~4.14!

Sy512
w2

2 S (
i 50

n21

~21! isin~ iu1C!D 2

512
w2

2

sin2S n~u1p!

2 D
S cos

u

2D 2 sin2S C1
n21

2
~u1p! D ,

~4.15!
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Sz5~21!n21w (
i 50

n21

~21! isin~ iu1C!

5~21!n21w

sinS n~u1p!

2 D
cos

u

2

sinS C1
n21

2
~u1p! D .

~4.16!

The average values of spin components are achieved b
tegration of Eqs.~4.14!–~4.16! over all the initial phases:

S̄x5
1

2p E
0

2p

SxdC50, ~4.17!

S̄y5
1

2p E
0

2p

SydC512
w2

4

sin2S n~u1p!

2 D
S cos

u

2D 2 , ~4.18!

S̄z5
1

2p E
0

2p

SzdC50. ~4.19!

Mean-square values of spin components are given by

^Sx
2&5

1

2p E
0

2p

Sx
2dC5

w4

16
F sin2S n~2u1p!

2 D
2~cosu!2 1¯

G ,

~4.20!

^Sy
2&5

1

2p E
0

2p

~Sy2S̄y!2dC5
w4

32

sin4S n~u1p!

2 D
S cos

u

2D 4 ,

~4.21!

^Sz
2&5

1

2p E
0

2p

Sz
2dC5

w2

2

sin2S n~u1p!

2 D
S cos

u

2D 2 . ~4.22!

The introduced average and mean-square spin compo
parameters characterize spin depolarization. From form
~4.17!–~4.22! it follows that they are turn dependent. Tu
numbern appears as an argument in trigonometric functio
providing oscillation of the average and mean-square s
parameters. Therefore, spin depolarization is suppres
Taking the average values of the trigonometric functions

sin2S n~u1p!

2 D5
1

2
, ~4.23!

sin4S n~u1p!

2 D5
3

8
, ~4.24!

and the average values of the parametersw,u among all the
particles,
in-

ent
as

,
in
d.

w̃'4pGgj
s

b*
, ~4.25!

ũ'2pS Q2
j

2D , ~4.26!

the turn-independent average and mean-square spin pa
eters are

S̄x50, S̄y512
w̃2

8S cos
ũ

2D 2 , S̄z50, ~4.27!

^Sx
2&5

w̃4

16
S 1

4~cos ũ !2
1¯ D ,

^Sy
2&5

3w̃4

256S cos
ũ

2
D 4 , ~4.28!

^Sz
2&5

w̃2

4S cos
ũ

2
D 2 .

The attained formulas~4.27! and~4.28! indicate that spin
depolarization due to beam-beam collisions is suppres
and depends on a betatron tune in a ring. The most dan
ous working point is close to a half-integer value, because
that case the value of cosũ/2 is close to zero and the spi
depolarization parameters become large. The matrix~4.11!
was obtained in a linear approximation to betatron parti
motion and to beam-beam forces, therefore it cannot t
higher-order nonlinear spin resonances. Due to the sm
value of w, depolarization effects, proportional tow4, are
negligible as compared with those proportional tow2.
Among possible depolarization effects, the most pronoun
is a change of the values ofS̄y and ^Sz

2&.

V. NUMERICAL SIMULATION OF THE BEAM-BEAM
EFFECT ON SPIN DEPOLARIZATION

A. Spin depolarization as a function of betatron tune

Computer simulations utilizing the numerical model
Sec. III were performed for the beam parameters, prese
in Table II. For that combination of collider parameters, t
values of the matrix parameters are as follows:

w̃54pGgj
s

b*
57.231023, ~5.1!

ũ52p~Q20.006 25!. ~5.2!

Initial particle distribution in phase space was chosen to
Gaussian:

f 5 f 0 exp2S px
21py

2

2p0
2 1

x21y2

2s2 D . ~5.3!
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During simulations, the average and rms values of spin
rameters were calculated according to the formulas

S̄x5
1

N (
i 51

N

Sx~ i !, ~5.4a!

S̄y5
1

N (
i 51

N

Sy~ i !, ~5.4b!

S̄z5
1

N (
i 51

N

Sz~ i !, ~5.4c!

A^Sx
2&5S (

i 51

N
1

N
@Sx~ i !2S̄x#

2D 1/2

, ~5.4d!

A^Sy
2&5S (

i 51

N
1

N
@Sy~ i !2S̄y#

2D 1/2

, ~5.4e!

A^Sz
2&5S (

i 51

N
1

N
@Sz~ i !2S̄z#

2D 1/2

. ~5.4f!

FIG. 4. Initial spin distribution.

TABLE II. Parameters of the interacted beams.

Particle energy,g 260
rms beam size at interaction point~IP!, s 0.08 mm
Beam-beam tune shift per collisionj 20.0125
Beta function,b* 0.65 m
a-

In a storage ring, spin is a subject of intrinsic resonanc
obeying the resonance condition

Gg5k01kxQx1kyQy , ~5.5!

where k0 , kx , and ky are integers. Average and rms sp
components as a function of tune values are presented in
5. In that simulation, horizontal and vertical tunes were tak
to be equal to each other,Qx5Qy . As seen, spin depolariza
tion is most significant if the fractional part of the tune
close to 1/2, as was predicted by Eqs.~4.27! and~4.28!. Also
depolarization is observed if higher-order spin resonan
are excited. Nonlinear spin resonances are not treated
analytical formulas of Sec. IV due to assumptions of t
linear model. If tunes are far enough from that value, s
depolarization is suppressed.

In Figs. 6 and 7, results of suppressed spin depolariza
for Qx5Qy514.43 are presented. The average values oSx
andSz are close to zero, as expected from Eqs.~4.27!. The
average value ofSy is slightly less than the initial value of 1
and oscillates around the stable value of 0.999 87. rms va
of spin components are also oscillatory functions of tu
number. Numerical values of average and rms values of s

FIG. 5. Spin depolarization as a function of betatron tune.
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FIG. 6. Average and rms values of spin component as a function of turn number,Qx5Qy514.43.
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components are close to analytical estimations~see Table
III !. Depolarization provides a small tail of distribution o
theSy component, which lasts from 1 to 0.9991. Distributio
of the Sx component is much narrower than that of theSz

component. It also follows from Eqs.~4.28!, where^Sx
2& is

proportional tow4, while ^Sz
2& is proportional tow2. Nu-

merical simulations confirm the analytical prediction th
spin depolarization due to the beam-beam interaction is s
pressed if particle trajectories are stable and spin reson
conditions are avoided.

In Figs. 8 and 9, results of strong spin depolarization
Qx5Qy514.505 are presented. The average value ofSy is
less than 0.5. rms values ofSy andSz spin components are
several orders of magnitude larger than for the previous c
Spin distribution has a spread from21 to 1. It indicates
significant depolarization, as expected from the results of
preceding section.

B. Spin depolarization in a ring without Siberian Snakes

To estimate the effect of Siberian Snakes on spin de
larization in the presence of a beam-beam interaction, c
sider a ring without Snakes. The derivation of spin mat
rotation after an arbitrary number of turns results in awkw
expressions, so we have to rely on computer simulations
Figs. 10 and 11, results of spin depolarization in a ring wi
out Snakes are presented. Simulations were performed
the same values of betatron tunesQx5Qy514.43 as in Figs.
t
p-
ce

r

e.

e

o-
n-

d
In
-
for

FIG. 7. Spin distribution after 106 turns,Qx5Qy514.43.
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FIG. 8. Average and rms values of spin components as a function of turn number,Qx5Qy514.505.
e
lt

he
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it
ti
d

te
ite
6 and 7, where spin depolarization was suppressed. As s
in the absence of Snakes, beam-beam collisions resu
steady spin depolarization.

C. Spin depolarization in the presence
of beam-beam instability

Up to now, we have considered particle motion in t
presence of a stable beam-beam interaction. There are
eral mechanisms that lead to beam-beam instability. Exc
tion of nonlinear resonances and unstable stochastic par
motion due to overlapping of resonance islands is the fun
mental phenomenon in beam-beam interaction@6#. Another
mechanism of unstable particle motion is a diffusion crea
by random fluctuations in the distribution of the oppos

TABLE III. Average and rms spin components forQx5Qy

514.43.

analytical numerical

S̄y 0.999 88 0.999 88

S̄x 0 0

S̄z 0 0

A^Sy
2& 1.0631024 1.731024

A^Sx
2& 731026 531025

A^Sz
2& 1.5431022 1.631022
en,
in

ev-
a-
cle
a-

d

FIG. 9. Spin distribution after 106 turns,Qx5Qy514.505.
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FIG. 10. Average and rms values of spin com
ponent as a function of turn number for a rin
without Siberian Snakes,Qx5Qy514.43.
d
e,

s-

5%
FIG. 11. Spin distribution after 106 turns in a ring without Si-
berian Snakes,Qx5Qy514.43.
beam. In Ref.@7#, noise beam-beam instability was studie
for the case of random fluctuations in opposite beam siz

sn5s0S 16
u~un!

2 D , ~5.6!

whereu is a noise amplitude andun is a uniform random
function with unit amplitude. It was shown that in the pre
ence of noise, beam emittance is increased with time as

FIG. 12. Distorted particle trajectories in the presence of 2.
noise in parameters in beam-beam kick, Eq.~3.2!.
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FIG. 13. ~a! and ~b! Beam envelopes;~c! and ~d! beam emittances in the presence of a beam-beam interaction with 2.5% no
parameters of beam-beam kick.

FIG. 14. Average and rms values of spin components as functions of turn number for a noisy beam-beam interaction,Qx5Qy

514.43.
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«n

«0
5A11Dn, ~5.7!

where the diffusion coefficientD is a function of beam-beam
parameterj, noise amplitudeu, and ratio of beam size,a, to
opposite beam size, 2s:

D5p2~ju!2S a

2s D 4

. ~5.8!

Noise in the beam-beam collision always induces instab
if the beam-beam kick is a nonlinear function of the coor
nate. Due to diffusion character, noise beam-beam instab
does not have a threshold character and can exist at
value of the beam-beam parameter.

An increase of beam emittance is accompanied by an
crease of beam size. In Figs. 12–14, results of a beam
namics study and spin depolarization in the presence
noisy beam-beam interaction are given. The value of no
amplitudeu50.025 was chosen arbitrary, to demonstrate
main features of diffusion beam-beam instability. In contr
with Fig. 2, particle trajectories at phase planes are
closed~see Fig. 12!. Beam emittances and beam envelop
are monotonous increasing functions of turn number~see
Fig. 13!. Increasing beam sizes results in steady spin de
larization~see Fig. 14!. It is also expected from the analytica
formulas~4.27! and~4.28!, where the average and rms bea
N
l.

c-
y
-
ty
ny

n-
y-
a
e
e
t
t

s

o-

parameters are proportional to the powers of parametew,
which, in turn, is proportional to the beam size according
Eq. ~4.5!. Therefore, beam-beam instability is a source
spin depolarization.

Spin depolarization due to beam-beam interaction was
served experimentally at the electron-positron collid
PETRA @8#. Below the beam-beam limit, where particle m
tion was stable, spin depolarization was negligible. Abo
the beam-beam limit, a significant depolarization was o
served, which was strongly correlated to beam blow up d
to electron-positron collisions.

VI. CONCLUSIONS

The effect of beam-beam interaction on spin depolari
tion in a proton-proton collider has been studied. The e
ployed method is based on a matrix formalism for spin a
vance and for perturbed betatron particle motion in a ri
Analytical calculations were done for a collider with on
interaction point and two installed Siberian Snakes in e
ring. A matrix for spin advance after an arbitrary number
turns is accomplished. The performed study indicates
spin depolarization due to beam-beam collisions is s
pressed if beam-beam interaction is stable and spin r
nances are avoided. Depolarization depends on the col
operation point. Unstable beam-beam interaction provi
steady depolarization.
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