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Spin depolarization due to beam-beam collisions
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The effect of the beam-beam interaction on spin depolarization in a proton-proton collider has been studied.
The employed method is based on a matrix formalism for spin advance and for perturbed betatron particle
motion in a ring. Calculations were done for a collider with one interaction point and two installed Siberian
Snakes in each ring. A matrix for spin advance after an arbitrary large number of turns is found. Performed
study indicates that spin depolarization due to beam-beam collisions is suppressed if the beam-beam interaction
is stable and if the operation point is far enough from spin resonances. Meanwhile, in the absence of snakes or
under beam-beam instability, spin is a subject of strong depolarization. Analytical estimations are confirmed by
results of computer simulationgS1063-651X98)06507-6

PACS numbd(s): 29.27.Hj, 29.27-a, 41.85:-p

[. INTRODUCTION whereG=1.792 85 is an anomalous magnetic momentum of

Particle colliders with polarized beams require carefulth® ProtonE is an electrical field, an@, andB, are com-
control of spin depolarization. During acceleration, spin isPonents of magnetic field, perpendicular and parallel to par-
subjected to intrinsic and imperfection resonances, resultin§cle velocity, respectively,
in depolarization. An extra source of depolarization is beam-
beam collisions. Dug to beam—beam interaction, particl_e mo- éL:iZ (0 XB) X0, 2.2
tion become essentially nonlinear and, under some circum- v
stances, unstable. In the present paper, the effect of beam-
beam collision on spin depolarization in a proton-proton .1 - .o
collider is studied. Betatron particle motion is defined as a BH=; (v-B) e (2.3
linear oscillator perturbed by a nonlinear beam-beam kick.

Spin rotation is described by subsequent spin matrix multi-, . . .

plication in a dipole magnet, in Siberian Snakes, and in théDartICIe velocityv is %XE’%”ded in the orthonormal set of
beam-beam interaction point. Analytical treatment of thecurvilinear coordinatex,y,z) as follows:

problem provides a choice of the collider operation point,

>

T T 0. R X\
where depolarization is suppressed. It also indicates a zone o=2 X' %+y'y+ |1+ |z, (2.4
of relatively strong depolarization. p

Il. SPIN MATRIX FORMALISM where p is a curvature radius of the reference coordinate

system, the dot means a derivative over time, and the prime
Rotation of spinS of a particle with chargej, massm,  Means a derivative over longitudinal coordinate. Change of

velocity A—olc, and energyy is govemed by the e independent variable in EG2.1) from t for z gives

Bargmann-Michel-TelegdiBMT) equation[1]:

dS dSdz dS v ,
059 [ e gt dzat dzj[ x2 @ @9
a—m—’y X (1+ 7)BL+(1+ )B” 1+; + X +y
Gyt Y | EXB 2.1 Calculation of magnetic field componen&2) and (2.3
1+y/ ¢ | results in the following expressions:
|
. x\? x\? x\] -
B, =|x2+y 2+ | 1+ —| [TH{[| 1+ =] +y'?By—x"y'B,—X'B,| 1+ —|x
p P p
x\? x\] - X X .
+1 =Xy Byt 1+; +x'?|By~y'B, 1+; y+| —x'By 1+; -y'By 1+; +(x'2+y'?)B,|z),

(2.6
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21-1

. X X . X\ .
B =|x'2+y'2+ 1+; X' By+y'By+ 1+E B,||x'x+y'y+| 1+ ;)z 2.7
|

The vector product of the electric field and the particle ve- dZSy ,

locity gives G2 = SPPyTS(PEP)+SPP,, (219
EXv=2|E 1+X) Ey' [X+|Ex’ 1+XE}* d?
AT ol 57 = SPPS(PITPY+SPPy,

+[y,Ex_EyX,]£]- (2.8)  Taking the third derivative of spin vector, Eq&.10 are

reduced to the third-order differential equations:
Combining all terms, the BMT equation now can be written

as S+ P(Z)S;(:Q
d§—§><|5 . S, +P3S,=0, (2.15
dz (2.9 o
S, +PsS, =0,
or
| P5=PZ+ P+ PZ. (2.16
S
az PSPy, A general solution to the problef.15 can be written in the
form
ds, .
E:Ssz_sxpp (2.10 Sc= Cy1+ Cy2c0g P62) + Cy3sin(P62),
gs, S,=C,1 +Cy,08 Pyz) + Cyssin(Podz),  (2.17)
—=8P,—-S,P,, .
daz Py 5P S,=C,1+ C,,c08 Py62) + C,38iN(Po62),
where the vectoP=(P,,P,,P,) is given by the terms up to where constant€;; , i=(x,y,2), j=(1,2,3) depend on ini-
first order by the following expressions: tial conditions.

Let us express constants in E¢&.17) through initial val-
ues of spin and its derivatives. Assuming in EB.17) 6z

P,=—1|(1+Gy)(B,—x'B,)+(1+G)x'B -
* myv ( MUBXB) )x'B, =0, the initial value of spin vectoSy=(S;,S0,S,0) is
given by
v v
+_2(1+ *Gy)(Ey EZ)} (219 Si0=Cyx11+Cxo,
q , , OZC 1+C 2, (21&
Py =g | (LHCM(By~Y'B)+(1+C)Y'B, Ho=Cnt ey
Sp=C;+Cpo.
v Y , _ .
+_2(1 7| (X'E, EX)}’ 212 From Egs. (2.17), initial values of the first S;
=(S)’(0,S§0,S;O) and of the seconé{;:( "O,S'y’o,s;'o) order
q , derivatives of spin vector are
iy | (1T GN(—X'BY'By) P
'0=Cy3Po,
+(1+G)(x'By+B,+y'By) S0~ GaPo
% S;,():Cygpo, (219
1+ +Gy|(Y'Ex—ExX')|. (213
S;0="CuzPo,
To derive the matrix of spin rotation, let us assume that ) 5
the vectorP is a constant at the infinitesimal distanée. Sko=~Cx2Po,
The second derivative of the spin vector is given by . )
, Sjo=—Cy2P5, (2.20

d
— 2 2
a2~ SR S(PE P TSPy, Slo=—Cx2P
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Combining Eqs(2.17—(2.20, solution for spin advance at NroB*
the distancesz can be written as follows: &= Tmoly’ (3.3

Q7 U

§=§0+Pisirl(Poéiz)vL%[l—cos(Poﬁz)]. (2.21 where N is a number of particles per bunch;g
0 0

=q%/(4meymc®) is a classical particle radius, andis a
transverse standard deviation of the opposite beam size.
Substitution of Eqs(2.10 and (2.14 into Eq. (2.21) gives

the following matrix of spin rotation at the distanée [2]: B. Spin matrix
Sy 1—-a(B%+C? ABa+Cb ACa—Bb Rotation of spin vecto= (S, .Sy ,S,) is described by a
S)|=| ABa-Cb 1-a(A*+C?  BCatAb subsequent matrix transformation in a lattice arc, in Siberian
S, ACa+Bb BCa—Ab 1-a(A2+B?) Snakes, and in an interaction point.
S0 1. Dipole magnet
X| Sy, (2.22 Spin rotation in an ideal lattice arc is described as a spin
S0 precession in a dipole magnet with bending angléssume
5 b b that the field of the dipole magnet has only one vertical com-
_x _ 1y _rz ponent:
A o B B, C P (2.23
B.=0, B,=0, B,=B. (3.9

a=1l-cose, b=sine, @=Pyéz. (2.249 .
Therefore, components of vectBr, Egs.(2.11)—(2.13), and
Matrix (2.22 can be used for calculation of spin rotation corresponding matrix coefficients, Eq8.23 and(2.24), are
in an arbitrary electromagnetic field, assuming the field isgiven by
constant at the distancéz. Below, matrix (2.22 will be
applied for the calculation of spin advance in a bending mag-_ _(1+Gy) B B B B
net and in a beam-beam interaction point. Px=0, Py= » P,=0, A=0, B=1, C=0,
(3.9
Ill. MODEL OF COLLIDER

1+G
WITH POLARIZED PARTICLES P, oz= ( ; Y) 52=(1+Gy)v. 3.6

A. Particle betatron motion

Let us consider a collider ring with two installed Siberian The matrix of spin rotation in the dipole magnet{ &
Snakes. We use a two-dimensional particle model in coordi-

nates(x,py= By (dx/d2)), (y.py=B; (dy/d2)), wherep; cogPy6z) 0 —sin(Py62)
By are beta functions of the ring. Particle motion between D,= 0 1 0 . (3.7
subsequent collisions combines linear matrix transformation, sin(Py6z) 0 cogPy62z)

perturbed by beam-beam interaction:
2. Siberian Snakes

cosé, sin b, 0 0
X1 o " % 0 0 Siberian Snakes rotate any spin vector by angkround
Pxns1 | _| —SINfx COS 6y — = axis [4]. Two types of snakes are used, which matrixes are
Yn+1 0 0 cosfy  sin oy given by
Py.n+1 0 0 —sin 6, cosé,
0O 0 1
Xn —
S,=|0 1 0], (3.8
p)( n+Apx,n , (31) 1 0 0
Yn
Py,nt APy n 0o 0 -1
— — S,=| 0 -1 0]. 3.9
where6,=2mQ, and §,=2mQ, are betatron angles ar@} 1 0 0

andQ, are betatron tunes. Beam-beam kigks, ,, Apy
are expressed as a result of an interaction of particles with 3. Interaction point
opposite beam with the Gaussian distribution function ' P
Spin advance after crossing an interaction point is de-
1—exp(—r2/202 scribed by matrix2.22, whereéz is an interaction distance,
(r2/20°2 ’ (32 defined below. VectoP, Egs.(2.1)—(2.13), in the case of a
head-on beam-beam collision, is as follows:

PEy
Cc

Apx,n:477'§xn

and similar forAp, ,. Parameteg is a beam-beam param-
eter, which characterizes the strength of the beam-beam in-

Y
. Py=—
teraction, Bp

(1+GY)BcH| Gyt

) 20
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Y | BEx
(1+G’y)By—(G’y+1Ty c |’ (31])

P,=0, (3.12 T T B -

where small terms’,y’ are neglectedBp=mcgBvy/q is a ! !
rigidity of particles,l?=(Ex,Ey,0) is an electrical field, and l———»
B= (By,By,0) is a magnetic field of the opposite bunch. Due ! '

test particle

v

P

y:B_p

4
=
T.\E‘

to Lorentz transformations, components of electromagnetic .
field of the opposite bunch are connected via relationships b» —-—+-—-—-—-—-—_ -
E, E, \
Bx:B ?, ByI—IB ? (313)
test particle

Assuming, that interacted particles are ultrarelativisic

N o FIG. 1. Position of the test particle with respect to the opposite
~1, y>1, the vectorP is simplified,

bunch:(a) before interaction(b) after interaction.

E E . . , .
P,= qczy (1+Gy)+ ( Gy+ Y )l~2G q—C‘Z’ The coordinate of the test particle at this moment vt is
mc-y 1+y m equal to the interaction distandz:
(3.19
qE Y qE sz=vyt=1 L =] (3.21
= L _ LA I PO X Z=Uq1l= ==, .
Py mczy[ (1+Gy)—| Gy+ 1+y) G o vitv, 2
(3.19

Taking into account Eq$3.18 and(3.19), the parameters
Let us express the matrix parametgrEq. (2.24, via the  of the spin matrixP,6z,P, 6z can be expressed as follows:

beam-beam parametér Electrostatic field of the opposite
round Gaussian bunch with lengthand peak current 1 exr{ rz)
2

=gNgc/l is [ y 252
) qN ) r2 PX5Z:PXE=47TG’)/§IB—* T ,
T 2mreolr — - 207 207
(3.22
= ! 1 - 3.1
 2meqBer ex 20°2) |’ (3.19 r2
| 1o ~ 2,2
X y P,6z=Py ==—47Gy¢{ —( | —————
E~E - E=E . (3.17 y vy mGy€ 5 i
o ) o _ 20°
Substitution of the expression of the electrostatic field into (3.23
Egs.(3.14 and (3.15 gives the expressions for vectBr,
) Finally, the parametep is given by
Iy r
PAG T e 1_ex’](_ﬁ) . 818 o=\(P,62)2+(P,52)2
- I x r? 1—exd — i
Py——4G Er—z 1-ex —27._2 ) (3.19) r 252
=47Gyé — | —F—=+ (3.29

r

wherel .=4meomc3/q=(A/Z)3.13x 10" A is a characteris- B (_2
20

tic value of the beam current. The beam-beam parangeter
Eq. (3.3 can be rewritten as follows:

. The parameter is typically much smaller than2 which
gzﬁ_|_ | (3.20 gives us the possibility of simplifying the matrix of spin
' rotation in the interaction point and to provide an analytical

A7 |, )/0'7'
] . ) ) treatment of the probler(see the next sectign
To define the interaction distan@z, let us suppose that

at the time moment=_0 the test particle enters the opposite TABLE I. Parameters of the numerical model.
bunch(see Fig. 1 The equation of motion of the test particle

is z;=v;t. The equation of motion of the right edge of the Number of modeling particlesy 5000
bunch isz,=1—wv,t. The test particle will leave the opposite  Number of turns 19
bunch whenz;=z,, or after the time intervat=1/(v, CPU time(for VAX Alpha) 5h

+l)2).
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Suppose that betatron angles in thandy directions are
equal to each othen, = 6, = 6. We consider particle motion
far enough from low order resonances, therefore particle tra-
jectory can be expressed as a linear oscillator with perturbed
betatron tunes:

x=r cogné+V¥), y=r sinno+V¥), 0=§+A0,
(4.2

whereV is an initial phase of betatron particle oscillations
andA 0<27 is a tune perturbation due to beam-beam colli-
sions. In Fig. 2, an example of particle trajectories in the
presence of a stable beam-beam interaction is given. Particle
trajectories in phase space are slightly deformed ellipses. In
this case, beam envelopes and beam emittances are also
stable(see Fig. 3. Beam-beam instability and its effect on
spin depolarization will be considered in Sec. V.

Parameter®\ and B, Eg. (2.23, at the interaction point

FIG. 2. Stable particle trajectories in phase space in the presen&@n be expressed as follows:

of a beam-beam interaction without noise.

The model developed in this section was incorporated into
the numerical codBeaMPATH [5]. Typical parameters of the

numerical model are summarized in Table I.

IV. ANALYTICAL TREATMENT OF SPIN
DEPOLARIZATION

A. Simplified spin matrix in the interaction point

To make an analytical treatment of spin depolarization, let

Py v .
A= —===sinng+V¥), (4.3
Po 1
Py X
Po r

Let us take into account that the parameagas small:

2
r r
(,0=P05Z=47TG)/§IB—* (1— Ez%—---

<2m. (4.5

us simplify the suggested model. Consider a collider with
two Siberian Snakes and one interaction point. The matrix oHence, the matrix parameteasandb are as follows:
spin advance after one revolution in the ring between the

beam-beam interaction is

-1 0 O
M ring™ D W/ZSZD 7TSlD w2= 0 1 0 . (41)
0O 0 -1
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a=1l-cosp~—-

> b=sin ¢~ ¢. (4.6)

Finally, the matrix of spin advance of a particle in an inter-
action point at thenth turn is given by

b
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1125 £
11
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FIG. 3. (a) and(b) Beam enveloped) and (d) beam emittances in the presence of a stable beam-beam interaction.
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2

1- - cod(n6+¥) - -sinAne+W) ¢ cogno+ V)

2

— & sinAng+v) 1—%sin2(n0+\lf) o sin(ng+ W)
¢2
—¢@ cogné+V¥) — ¢ sin(ng+V¥) 1—?

2

2

B. Spin matrix after an arbitrary number of turns

PRE 58

4.7

Now let us derive a matrix of spin advance after an arbitrary number of turns. Due to the small value of the pagameter
we will leave in the resulting matrix only terms proportional ¢cand ¢2, while neglecting terms witko®, ¢*, and higher

order.

Suppose the initial position of the particles is just before the interaction point. After the interaction point, the matrix of spin
advance is the matrig.7), wheren=0:

1—%c052\lf —%sinZ\If ¢ cosW¥
(PZ (PZ
Mp.p(1)= —Zsinztlf 1—?sin2\lf @ sinv
(PZ
— ¢ cosV¥ —¢@ sin¥ 1—7

2

2

4.9

After the interaction point, particles perform one revolution in the ring and the spin matrix after the firsMuygn,is a

product of matrixeg4.1) and (4.8):

2

2

1)
1—70032@’ 7
-10 0 5 )
Ml/O: 0 1 0
0 0 -1 4 2

—¢ cosV¥

—(isinzqf ¢ cosV¥
% sin2w 1- 2 sirw psin¥| =

—¢@ sin¥

¥
2

Analogously, after the second turn the spin matrix is

-1 0 O
M= 0 1 0
0O 0 -1
2
—1+% cos¥

2
(“E
X —ZstIf

¢ cosWV

2

2

2

2 sin 2 0+W)

—¢ coq 6+V)

2
¢
Zst‘lf
2

l—%sinz\lf

¢ sin¥

1- % [cosW +cog 6+W¥)]?

2
%[—sinzp+sin2(a+\p)+~--]

—¢[cosV+cog0+T)]

2

2

¥

5 SIP(6+)

— ¢ sin(6+ V)
— ¢ cosV¥

¢ sint

2
¢
“lty

2

2
-1+ % cos¥

2

(“E
—ZstI’

¢ cosW¥

1—% co2(6+ W) —‘% SNA6+W¥) @ cod +V)

@ Sin(0+)

(PZ

-3

2
%sinztlf
2

1- % sif¥ ¢ sinWV

@ sinv

—¢@ cosV¥

2
¢
2

4.9

- % [sin2¥ —sin A 9+¥)+---] ¢[cos¥+cogo+¥)]

2

1—% [sin W —sin( 6+ W)

— g[sin ¥ —sin(6+¥)]

elsin ¥ —sin(6+¥)]

(4.10

1— ¢?— @?cog 0+ 2W)
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Every element of the matri¢d.10 has a specific dependence on the turn number. Let us assume thahafter {urns the
resulting matrix of spin rotation will be as follows:

2 n 2
1%(2 cos{i0+\P))

i=0

n

(—pn*t (—1)"1p>, cogif+W)
i=0

¢’ [ <
vy (2 (=1 sin Ai o+ W) +---
2

0>, (—1)sin(i g+W)
i=o

0 [ < 9 [ <
M+ 1)0= Z(Z(—1)i+1sin2(i9+\1f)+-~- 1——(i (—=1)'sin(i 6+ )

i=0

n n . l
(—1)"¢ >, cogif+W) @D (—1)*"sin(i 6+ W) (—1)"“(1—%4)%---
i=o0 i=o0

(4.11

Then, multiplying the suggested mat(i4.11) by the matrix of spin advance in the next beam-beam interaction(4&4), and
by the matrix of spin advance in a ring, E@..1), the matrix after 0+ 2) turns is obtained:

2 2
1—%co§[(n+l)0+\lf] —%sinz[(n+1)e+qf] o cog(n+1)6+¥]
-1 0 O (p2 <P2
M (4 2)0= 8 (1) 01 - Sind(n+1)6+¥] 1—?sinz[(n+1)0+\1f] @ sif(n+1)0+V¥]
2
— ¢ cod(n+1)6+W] — ¢ sin(n+1)0+W] 1_%
(p2 n 2 (p2 n ‘ n
(~)™1- = > cogiot+w) T > (—1)sinio+ W)+ | (1) e D codif+W)
i= i=0 i=0

2

2 n n 2 n
x %(2‘6 (—1)*1sin 2(i9+«1f)+---) 1—%(2 (—1)isin(ie+x1f)) ga;) (—1)isin(i 6+ W)

n n . 1
(-1)"¢ >, cogif+W) 0D (—1)1sin(i g+ W) (—1)"“(1— % ¢2+---)
i=0 i=0
2 n+1 2 2 n+1 n+1
(1)”+2[1%(2] cos(io9+\I’)) } %(Z) (—1)*"*isin 2(i0+qf)+~-) (—1)"4;2) codig+W)
2 n+1 2 n+1 2 n+1
- %(ZO (—1)*1sin 2(i0+\1f)+--~) 1—%(20 (—1)isin(i 6+ W) (pZ] (—1)sinio+w) |. (4.12
n+1 n+1 n+2
(—1)"“@2) cogi0+W) 2, (—1) " lsin(i o+ W) (—1)"+2(1— — ¢2+--.)
|
The resulting matrix(4.12 can be written as the matrix o2 n-1 .
(4.1, where the index rf) is substituted by the index =— (=) Isin Ai 9+ W)+
4 P
(n+1). Therefore, suggestidd.11) is correct and gives the =0
matrix of spin advance after an arbitrary number of turns. [n(26+ )
o2 si 5
. _(_1yn-17_
C. Spin components aftern turns (-1 7 cosd
The developed approach gives us the possibility of pre-
dicting the effect of a beam-beam interaction on spin depo- % sin 2W + n—-1 (26+ 77)) L. (4.14)
larization after a large number of turns. Suppose the initial 2 ' ’
spin vector has only one transverse compoignrtl and the 5 /n-1 s
other components are equal to ze®&:=S,=0 (see Fig. 4. . ¥ PN
Spin advance is as follows: S=1 2 ;0 (=1)'sin(i0+F)
S« a;; Qi a3 0 i n(o+ )
Sy|=|32 azp ax||l|, (4.13 @2 S| _ n—1
SZ a31 a32 a33 0 :1—?—0)25”12 \II+T(0+7T) ’
cosy

therefore only matrix elements,;,,a,,,a3, are essential to
determine the values of spin components aft¢urns: (4.19
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n—-1

. _ g
S,=(—1)" e > (—1)'sin(io+W) e~4mGyE o, (4.25
i=0
(n(0+m) ~ ¢
sinl ——— _ 0~2m Q_§ , (4.26
=(-1)"1p — % sin| ¥+ - (0+7) .
cos— the turn-independent average and mean-square spin param-
2 eters are
(4.1 ~
— — ra —
The average values of spin components are achieved by in- 5=0, §=1- 9\2’ S,=0, (4.27)
tegration of Eqs(4.14—(4.16 over all the initial phases: 8( cosz)
— 1 2m
= — = I ~4
16 \ 4(cos 6)?
_.[n(6+ )
s-t (Tsav-1-£ sz( 2 ) 4.1 ()= L (4.28
=5, ), SWV=1-7 —F7—Fz— 418 S = e :
cosi 256 cos—
S, ! f 2Wszdw 0 (4.19 — ?
T2m Jo T | (S=—T—=r2.
. . 4| cos—
Mean-square values of spin components are given by 2
sir? n(260+ ) The attained formulagt.27) and(4.28 indicate that spin
) 1 f[em, o 2 depolarization due to beam-beam collisions is suppressed
(S)= o fo S d¥ = 16 W*"' ' and depends on a betatron tune in a ring. The most danger-
(4.20 ous working point is close to a half-integer value, because in
that case the value of c@# is close to zero and the spin
~(n(6+m) depolarization parameters become large. The maikl)
1 (2 o o sinf 2 was obtained in a linear approximation to betatron particle
<5§>= _ (Sy—Sy)zd\P= ——, motion and to beam-beam forces, therefore it cannot treat
2m Jo 32 ( 0) higher-order nonlinear spin resonances. Due to the small
cos- . "
2 value of ¢, depolarization effects, proportional to*, are
(4.2)  negligible as compared with those proportional §G.
Among possible depolarization effects, the most pronounced
, Sir? n(o+m) is a change of the values &, and(S?).
1 2m 1)
2 2
=-— dv=— . (4.2
<SZ> 27 Jo S, 2 6\? (4.22 V. NUMERICAL SIMULATION OF THE BEAM-BEAM
cos3 EFFECT ON SPIN DEPOLARIZATION

. . A. Spin depolarization as a function of betatron tune
The introduced average and mean-square spin component

parameters characterize spin depolarization. From formulas Computer simulations utilizing the numerical model of
(4.17—(4.22 it follows that they are turn dependent. Turn Sec. Il were performed for the beam parameters, presented
numbem appears as an argument in trigonometric functionsjn Table II. For that combination of collider parameters, the
providing oscillation of the average and mean-square spinalues of the matrix parameters are as follows:

parameters. Therefore, spin depolarization is suppressed.

Taking the average values of the trigonometric functions $=4mGye l;i*=7.2>< 10°3, (5.1)
2 n( 6+ ) B 1 B

s > |72 (423 §=2m(Q—0.006 25. (52

—n(0+ ) 3 Initial particle distribution in phase space was chosen to be

sif| ———|=—, (4.24  Gaussian:

2 8
2, 12 2,42
+ +

and the average values of the parametetsamong all the f=f, exp— Px zpy + X z (5.3
particles, 2pg 20
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During simulations, the average and rms values of spin pa- S g
rameters were calculated according to the formulas L 00 I
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= FIG. 5. Spin depolarization as a function of betatron tune.
S=n 2 S0, (5.4 Pin cep
=
In a storage ring, spin is a subject of intrinsic resonances,
_ ¢ N obeying the resonance condition
S=5 2 Si0), (5.49
=1 Gy= k0+kax+kyan (5.9
5 Noq -, vz wherek,, ky, andk, are integers. Average and rms spin
V(S = 2 NS =S (5.4d  components as a function of tune values are presented in Fig.
=1 5. In that simulation, horizontal and vertical tunes were taken
to be equal to each otheéd,=Q, . As seen, spin depolariza-
N 1/2 . . . . g . . .
\/_2_ > 1 < 54 tion is most significant if the fractional part of the tune is
(8))= “~ N [Sy()—S] ' (548 (close to 1/2, as was predicted by E¢&27) and(4.28. Also
depolarization is observed if higher-order spin resonances
Ny 12 are excited. Nonlinear spin resonances are not treated by
T 4 S 12 analytical formulas of Sec. IV due to assumptions of the
(S2) (Z‘l N [SA1) =S ) (5.49 linear model. If tunes are far enough from that value, spin

TABLE Il. Parameters of the interacted beams.

Particle energyy 260
rms beam size at interaction poifiP), o 0.08 mm
Beam-beam tune shift per collisigh —0.0125
Beta function,8* 0.65 m

depolarization is suppressed.

In Figs. 6 and 7, results of suppressed spin depolarization
for Qu=Q,=14.43 are presented. The average valueS,of
andS, are close to zero, as expected from Ed@s27). The
average value db, is slightly less than the initial value of 1,
and oscillates around the stable value of 0.999 87. rms values
of spin components are also oscillatory functions of turn
number. Numerical values of average and rms values of spin
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FIG. 6. Average and rms values of spin component as a function of turn nu@peQ,=14.43.

components are close to analytical estimati¢sse Table
[II'). Depolarization provides a small tail of distribution of
the S, component, which lasts from 1 to 0.9991. Distribution
of the S, component is much narrower than that of tBge
component. It also follows from Eq$4.28, where(S?) is
proportional toe?, while (S?) is proportional tog?. Nu-
merical simulations confirm the analytical prediction that
spin depolarization due to the beam-beam interaction is sup-
pressed if particle trajectories are stable and spin resonance
conditions are avoided.

In Figs. 8 and 9, results of strong spin depolarization for
Qx=Qy=14.505 are presented. The average valu§yois
less than 0.5. rms values &) andS, spin components are
several orders of magnitude larger than for the previous case.
Spin distribution has a spread from1 to 1. It indicates
significant depolarization, as expected from the results of the
preceding section.

B. Spin depolarization in a ring without Siberian Snakes

To estimate the effect of Siberian Snakes on spin depo-
larization in the presence of a beam-beam interaction, con-
sider a ring without Snakes. The derivation of spin matrix
rotation after an arbitrary number of turns results in awkward
expressions, so we have to rely on computer simulations. In
Figs. 10 and 11, results of spin depolarization in a ring with-
out Snakes are presented. Simulations were performed for
the same values of betatron tur@s=Q,=14.43 as in Figs.
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FIG. 8. Average and rms values of spin components as a function of turn nu@eQ,=14.505.

6 and 7, where spin depolarization was suppressed. As seen,
in the absence of Snakes, beam-beam collisions result in
steady spin depolarization.

C. Spin depolarization in the presence
of beam-beam instability

Up to now, we have considered particle motion in the
presence of a stable beam-beam interaction. There are sev-
eral mechanisms that lead to beam-beam instability. Excita-
tion of nonlinear resonances and unstable stochastic particle
motion due to overlapping of resonance islands is the funda-
mental phenomenon in beam-beam interac{i®h Another
mechanism of unstable particle motion is a diffusion created
by random fluctuations in the distribution of the opposite

TABLE Ill. Average and rms spin components f@,=Q,
=14.43.

analytical numerical
g 0.999 88 0.999 88
S, 0 0
S, 0 0
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FIG. 9. Spin distribution after fOturns,QX:Qy: 14.505.
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berian SnakexQ,=Q,=14.43.
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&n parameters are proportional to the powers of paramgter
P Vv1+Dn, (5.7 which, in turn, is proportional to the beam size according to
Eq. (4.5. Therefore, beam-beam instability is a source of
where the diffusion coefficierd is a function of beam-beam Spin depolarization.
parametek, noise amplitudel, and ratio of beam siz@, to Spin depolarization due to beam-beam interaction was ob-
opposite beam size02 served experimentally at the electron-positron collider
PETRA[8]. Below the beam-beam limit, where particle mo-
tion was stable, spin depolarization was negligible. Above
the beam-beam limit, a significant depolarization was ob-
served, which was strongly correlated to beam blow up due
Noise in the beam-beam collision always induces instabilityto electron-positron collisions.
if the beam-beam kick is a nonlinear function of the coordi-
nate. Due to diffusion character, noise beam-beam instability
does not have a threshold character and can exist at any
value of the beam-beam parameter. The effect of beam-beam interaction on spin depolariza-
An increase of beam emittance is accompanied by an intion in a proton-proton collider has been studied. The em-
crease of beam size. In Figs. 12-14, results of a beam dyloyed method is based on a matrix formalism for spin ad-
namics study and spin depolarization in the presence of sance and for perturbed betatron particle motion in a ring.
noisy beam-beam interaction are given. The value of noisénalytical calculations were done for a collider with one
amplitudeu=0.025 was chosen arbitrary, to demonstrate thenteraction point and two installed Siberian Snakes in each
main features of diffusion beam-beam instability. In contrastring. A matrix for spin advance after an arbitrary number of
with Fig. 2, particle trajectories at phase planes are noturns is accomplished. The performed study indicates that
closed(see Fig. 12 Beam emittances and beam envelopesspin depolarization due to beam-beam collisions is sup-
are monotonous increasing functions of turn numtsme pressed if beam-beam interaction is stable and spin reso-
Fig. 13. Increasing beam sizes results in steady spin depaiances are avoided. Depolarization depends on the collider
larization(see Fig. 14 It is also expected from the analytical operation point. Unstable beam-beam interaction provides
formulas(4.27) and(4.28, where the average and rms beamsteady depolarization.
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